4.6 Article

Toxoplasma gondii Proliferation Require Down-Regulation of Host Nox4 Expression via Activation of PI3 Kinase/Akt Signaling Pathway

期刊

PLOS ONE
卷 8, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0066306

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea
  2. Korea Health Technology Research & Development Project, Ministry of Health & Welfare, Republic of Korea [A100876-1102-0000100]
  3. Ministry of Education, Science, and Technology [2007-0054932, 2009-0068747, 2011-0006228, 2011-0023501]
  4. National Research Foundation of Korea [2011-0023501, 2009-0068747] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Toxoplasma gondii results in ocular toxoplasmosis characterized by chorioretinitis with inflammation and necrosis of the neuroretina, pigment epithelium, and choroid. After invasion, T. gondii replicates in host cells before cell lysis, which releases the parasites to invade neighboring cells to repeat the life cycle and establish a chronic retinal infection. The mechanism by which T. gondii avoids innate immune defense, however, is unknown. Therefore, we determined whether PI3K/Akt signaling pathway activation by T. gondii is essential for subversion of host immunity and parasite proliferation. T. gondii infection or excretory/secretory protein (ESP) treatment of the human retinal pigment epithelium cell line ARPE-19 induced Akt phosphorylation, and PI3K inhibitors effectively reduced T. gondii proliferation in host cells. Furthermore, T. gondii reduced intracellular reactive oxygen species (ROS) while activating the PI3K/Akt signaling pathway. While searching for the main source of these ROS, we found that NADPH oxidase 4 (Nox4) was prominently expressed in ARPE-19 cells, and this expression was significantly reduced by T. gondii infection or ESP treatment along with decreased ROS levels. In addition, artificial reduction of host Nox4 levels with specific siRNA increased replication of intracellular T. gondii compared to controls. Interestingly, these T. gondii-induced effects were reversed by PI3K inhibitors, suggesting that activation of the PI3K/Akt signaling pathway is important for suppression of both Nox4 expression and ROS levels by T. gondii infection. These findings demonstrate that manipulation of the host PI3K/Akt signaling pathway and Nox4 gene expression is a novel mechanism involved in T. gondii survival and proliferation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据