4.6 Article

Phosphoinositides Play Differential Roles in Regulating Phototropin1-and Phototropin2-Mediated Chloroplast Movements in Arabidopsis

期刊

PLOS ONE
卷 8, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0055393

关键词

-

资金

  1. European Union (EU) [215174]
  2. Polish National Science Center [211/03/N/NZ3/00224, 2011/01/N/NZ3/00280]
  3. Jagiellonian University within the SET project
  4. European Union [POIG.02.01.00-12-064/08]

向作者/读者索取更多资源

Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca-(c)(2+) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca-(c)(2+) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据