4.6 Article

Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE

期刊

PLOS ONE
卷 8, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0060514

关键词

-

资金

  1. National Institutes of Health (NIH) [R01 EB000331, R44NS063537, P30 NS057091, P41 RR08079]
  2. W. M. Keck Foundation
  3. Natural Sciences and Engineering Research Council of Canada [RGPIN 375457-09]
  4. European Research Council [ERC-2010-AdG, 269853]
  5. National Science Foundation [DBI-9907842]
  6. NIH [S10 RR1395]
  7. European Research Council (ERC) [269853] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T-2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T-2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T-2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据