4.6 Article

A Noninvasive Method to Determine the Fate of Fe3O4 Nanoparticles following Intravenous Injection Using Scanning SQUID Biosusceptometry

期刊

PLOS ONE
卷 7, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0048510

关键词

-

资金

  1. National Science Council of Taiwan [NSC100-2221-E003-013, NSC100-2112-M003-010, NSC 100-2120-M-002-015, NSC101-2120-M168-001, NSC 101-2221-E003-005]
  2. Department of Health [DOH99-TD-N-111-008, DOH100-TD-N-111-008, DOH101-TD-N-111-004]
  3. National Taiwan Normal University

向作者/读者索取更多资源

Magnetic nanoparticles (MNPs) of Fe3O4 have been widely applied in many medical fields, but few studies have clearly shown the outcome of particles following intravenous injection. We performed a magnetic examination using scanning SQUID biosusceptometry (SSB). Based on the results of SSB analysis and those of established in vitro nonmagnetic bioassays, this study proposes a model of MNP metabolism consisting of an acute metabolic phase with an 8 h duration that is followed by a chronic metabolic phase that continues for 28 d following MNP injection. The major features included the delivery of the MNPs to the heart and other organs, the biodegradation of the MNPs in organs rich with macrophages, the excretion of iron metabolites in the urine, and the recovery of the iron load from the liver and the spleen. Increases in serum iron levels following MNP injection were accompanied by increases in the level of transferrin in the serum and the number of circulating red blood cells. Correlations between the in vivo and in vitro test results indicate the feasibility of using SSB examination for the measurement of MNP concentrations, implying future clinical applications of SSB for monitoring the hematological effects of MNP injection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据