4.6 Article

Read length versus Depth of Coverage for Viral Quasispecies Reconstruction

期刊

PLOS ONE
卷 7, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0047046

关键词

-

资金

  1. Swiss National Science Foundation [CR32I2_127017]
  2. Swiss National Science Foundation (SNF) [CR32I2_127017] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Recent advancements of sequencing technology have opened up unprecedented opportunities in many application areas. Virus samples can now be sequenced efficiently with very deep coverage to infer the genetic diversity of the underlying virus populations. Several sequencing platforms with different underlying technologies and performance characteristics are available for viral diversity studies. Here, we investigate how the differences between two common platforms provided by 454/Roche and Illumina affect viral diversity estimation and the reconstruction of viral haplotypes. Using a mixture of ten HIV clones sequenced with both platforms and additional simulation experiments, we assessed the trade-off between sequencing coverage, read length, and error rate. For fixed costs, short Illumina reads can be generated at higher coverage and allow for detecting variants at lower frequencies. They can also be sufficient to assess the diversity of the sample if sequences are dissimilar enough, but, in general, assembly of full-length haplotypes is feasible only with the longer 454/Roche reads. The quantitative comparison highlights the advantages and disadvantages of both platforms and provides guidance for the design of viral diversity studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据