4.6 Article

cGMP-Dependent Protein Kinase Contributes to Hydrogen Sulfide-Stimulated Vasorelaxation

期刊

PLOS ONE
卷 7, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0053319

关键词

-

资金

  1. Fondazione per la Ricerca Scientifica Termale FoRST (Rome, Italy)
  2. European Union (European Social Fund - ESF)
  3. Operational Program Education and Lifelong Learning'' of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thalis
  4. European Social Fund
  5. Aristeia [1436]
  6. EU FP7 REGPOT [CT-2011-285950]
  7. COST Action (ENOG: European network on gasotransmitters) [BM1005]
  8. Discovery grant from the Natural Sciences and Engineering Research Council of Canada
  9. Heart and Stroke Foundation Canada

向作者/读者索取更多资源

A growing body of evidence suggests that hydrogen sulfide (H2S) is a signaling molecule in mammalian cells. In the cardiovascular system, H2S enhances vasodilation and angiogenesis. H2S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K-ATP); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H2S-induced vasorelaxation. The effect of H2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H2S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H2S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H2S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H2S production) were reduced in vessels of PKG-I knockout mice (PKG-I-/-). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I-/-, suggesting that there is a cross-talk between K-ATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据