4.6 Article

Recombinant Human MFG-E8 Attenuates Intestinal Injury and Mortality in Severe Whole Body Irradiation in Rats

期刊

PLOS ONE
卷 7, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0046540

关键词

-

资金

  1. National Institutes of Health (NIH) [R33 A1080536, R01 GM057468]

向作者/读者索取更多资源

The gastrointestinal (GI) syndrome component of acute radiation syndrome (ARS) results from depletion of immature parenchymal stem cells after high dose irradiation and contributes significantly to early mortality. It is associated with severe, irreparable damage in the GI tract and extremely low survival. There is a need for the development of viable mitigators of whole body irradiation (WBI) due to the possibility of unexpected high level radiation exposure from nuclear accidents or attacks. We therefore examined the effect of recombinant human milk fat globule-EGF factor 8 (rhMFG-E8) in mitigating damage after WBI. Male Sprague-Dawley rats were exposed to 10 Gy WBI using Cesium-137 as the radiation source. The animals in the treatment group received rhMFG-E8 (166 mu g/kg BW) subcutaneously once a day with the first dose given 6 h after WBI. Blood and tissue samples from the ileum were collected after 3 days of treatment. A separate cohort of animals was treated for 7 days and the 21 day mortality rate was determined. Treatment with rhMFG-E8 significantly improved the survival from 31% to 75% over 21 days. Furthermore, rhMFG-E8 treatment resulted in a 36% reduction in the radiation injury intestinal mucosal damage score, corresponding to visible histological changes. MFG-E8 gene expression was significantly decreased in WBI-induced animals as compared to sham controls. Treatment with rhMFG-E8 increased p53 and p21 expression by 207% and 84% compared to untreated controls. This was accompanied by an 80% increase in the expression of anti-apoptotic cell regulator Bcl-2. p53 and p21 levels correlate with improved survival after radiation injury. These cell regulators arrest the cell after DNA damage and enable DNA repair as well as optimize cell survival. Taken together, these results indicate that rhMFG-E8 ameliorates the GI syndrome and improves survival after WBI by minimizing intestinal cell damage and optimizing recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据