4.6 Article

Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

期刊

PLOS ONE
卷 7, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0049043

关键词

-

向作者/读者索取更多资源

Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl) glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 mu g/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 mu g/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据