4.6 Article

Modeling and Experimental Methods to Probe the Link between Global Transcription and Spatial Organization of Chromosomes

期刊

PLOS ONE
卷 7, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0046628

关键词

-

资金

  1. Department of Science and Technology, India [SR/S5/NM-36/2005, DST/SJF/GVS/6223]
  2. Israel Science Foundation [1329/08]
  3. Mechanobiology Institute, Singapore
  4. Council of Scientific and Industrial Research doctoral fellowship

向作者/读者索取更多资源

Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naive and activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据