4.6 Article

Combination Treatment of Hypothermia and Mesenchymal Stromal Cells Amplifies Neuroprotection in Primary Rat Neurons Exposed to Hypoxic-Ischemic-Like Injury In Vitro: Role of the Opioid System

期刊

PLOS ONE
卷 7, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0047583

关键词

-

资金

  1. National Institutes of Health
  2. National Institute of Neurological Disorders and Stroke [1R01NS071956-01]
  3. James and Esther King Foundation for Biomedical Research Program
  4. SanBio Inc.
  5. Celgene Cellular Therapeutics
  6. KMPHC
  7. NeuralStem Inc.

向作者/读者索取更多资源

This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25 degrees C (severe hypothermia), 34 degrees C (moderate hypothermia), and 37 degrees C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34 degrees C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据