4.6 Article

Multi-Session Transcranial Direct Current Stimulation (tDCS) Elicits Inflammatory and Regenerative Processes in the Rat Brain

期刊

PLOS ONE
卷 7, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0043776

关键词

-

资金

  1. Koeln Fortune Program / Faculty of Medicine, University of Cologne, Germany [143/2011]

向作者/读者索取更多资源

Transcranial direct current stimulation (tDCS) is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16) were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 mu A, 15 min). Bromodeoxyuridine (BrdU) was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC). Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by similar to 60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据