4.6 Article

Engineered Vascular Beds Provide Key Signals to Pancreatic Hormone-Producing Cells

期刊

PLOS ONE
卷 7, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0040741

关键词

-

资金

  1. Russell Berrie Nanotechnology Institute
  2. Israel Ministry of Science
  3. Juvenile Diabetes Research Foundation [9-2007-472]

向作者/读者索取更多资源

The mechanisms underlying early islet graft failure are not entirely clear, but are thought to involve ischemic injury due to delayed vascularization. We hypothesize that blood vessels play an active role in cell-cell communications supporting islet survival and engraftment. To test this hypothesis and to uncouple endothelial cell (EC)-generated signaling stimuli from their nutritional and gas exchange functions, we developed three dimensional (3D) endothelial vessel networks in engineered pancreatic tissues prepared from islets, fibroblasts and ECs. The tri-culture setup, seeded on highly porous biocompatible polymeric scaffolds closely mimics the natural anatomical context of pancreatic vasculature. Enhanced islet survival correlating with formation of functional tube-like endothelial vessels was demonstrated. Addition of foreskin fibroblasts to islet-endothelial cultures promoted tube-like structure formation, which further supported islet survival as well as insulin secretion. Gene expression profiles of EC growth factors, extracellular matrix (ECM), morphogenes and differentiation markers were significantly different in 2D versus 3D culture systems and were further modified upon addition of fibroblasts. Implantation of prevascularized islets into diabetic mice promoted survival, integration and function of the engrafted engineered tissue, supporting the suggested role of ECs in islet survival. These findings present potential strategies for preparation of transplantable islets with increased survival prospects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据