4.6 Article

Structures of Human DPP7 Reveal the Molecular Basis of Specific Inhibition and the Architectural Diversity of Proline-Specific Peptidases

期刊

PLOS ONE
卷 7, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0043019

关键词

-

资金

  1. Canadian Institutes for Health Research
  2. Canadian Foundation for Innovation
  3. Genome Canada through Ontario Genomics Institute
  4. GlaxoSmithKline
  5. Karolinska Institutet
  6. Knut and Alice Wallenberg Foundation
  7. Ontario Innovation Trust
  8. Ontario Ministry for Research and Innovation
  9. Merck Co., Inc.
  10. Novartis Research Foundation
  11. Swedish Agency for Innovation Systems
  12. Swedish Foundation for Strategic Research
  13. Wellcome Trust
  14. Doktoratskolleg Molecular Enzymology from Austrian Science Fund
  15. UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]
  16. Austrian Science Fund (FWF) [W 901] Funding Source: researchfish

向作者/读者索取更多资源

Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity-and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (alpha/beta-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The specificity domains are structurally also completely different exhibiting a b-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据