4.6 Article

An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction

期刊

PLOS ONE
卷 7, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0045313

关键词

-

资金

  1. NASA Astrobiology: Exobiology and Evolutionary Biology grants [NNG05GP24G, NNX09AV28G]
  2. National Science Foundation [MCB1020458]
  3. Virginia Tech Genetics, Bioinformatics and Computational Biology Ph.D. program
  4. NASA [105838, NNX09AV28G] Funding Source: Federal RePORTER
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [1020458] Funding Source: National Science Foundation

向作者/读者索取更多资源

Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F-420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe-4-S-4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe-4-S-4] cluster and an additional [Fe-4-S-4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe-4-S-4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据