4.6 Article

Functional Characterizations of RIG-I to GCRV and Viral/Bacterial PAMPs in Grass Carp Ctenopharyngodon idella

期刊

PLOS ONE
卷 7, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0042182

关键词

-

资金

  1. Program for New Century Excellent Talents in University [NCET-08-0466]
  2. Chinese Universities Scientific Fund [QN2009022]

向作者/读者索取更多资源

Background: RIG-I (retinoic acid inducible gene-I) is one of the key cytosolic pattern recognition receptors (PRRs) for detecting nucleotide pathogen associated molecular patterns (PAMPs) and mediating the induction of type I interferon and inflammatory cytokines in innate immune response. Though the mechanism is well characterized in mammals, the study of the accurate function of RIG-I in teleosts is still in its infancy. Methodology/Principal Findings: To clarify the functional characterizations of RIG-I in grass carp Ctenopharyngodon idella (CiRIG-I), six representative overexpression plasmids were constructed and transfected into C. idella kidney (CIK) cell lines to obtain stably expressing recombinant proteins, respectively. A virus titer test and 96-well plate staining assay showed that all constructs exhibited the antiviral activity somewhat. The quantitative real-time RT-PCR (qRT-PCR) demonstrated that mRNA expressions of CiIPS-1, CiIFN-I and CiMx2 were regulated by not only virus (GCRV) or viral PAMP (poly(IC)) challenge but also bacterial PAMPs (LPS and PGN) stimulation in the steadily transfected cells. The results showed that the full-length CiRIG-I played a key role in RLR pathway. The repressor domain (RD) exerted an inhibitory function of the signaling channel under all utilized challenges. Caspase activation and recruitment domains (CARDs) showed a positive role in GCRV and poly(I: C) challenge. Helicase motifs were crucial for the signaling pathway upon LPS and PGN stimulation. Interestingly, DCARDs (CARDs deleted) showed postive modulation in RIG-I signal transduction. Conclusions/Significance: The results provided some novel insights into RIG-I sensing with a strikingly broad regulation in teleosts, responding not only to the dsRNA virus or synthetic dsRNA but also bacterial PAMPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据