4.6 Article

Ih Current Is Necessary to Maintain Normal Dopamine Fluctuations and Sleep Consolidation in Drosophila

期刊

PLOS ONE
卷 7, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0036477

关键词

-

资金

  1. Ministerio de Ciencia e Innovacion [BFU2008-04683]
  2. Comunidad Autonoma de Madrid grant [P-SEM-0255-2006, BFU2010-10981-E]

向作者/读者索取更多资源

HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep: activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest: activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据