4.6 Article

RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts

期刊

PLOS ONE
卷 7, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0038769

关键词

-

资金

  1. Fondation pour la Recherche Medicale (FRM) France
  2. EU (European Transcriptome Regulome & Cellular Commitment Consortium EUTRACC) [LSHG-CT-2007-037445, EPIDIACAN]
  3. SkinChroma-CNRS
  4. Institut National du Cancer (INCA)
  5. Agence nationale de la recherche [ANR-09-BLAN-0266]
  6. Agence Nationale de la Recherche (ANR) [ANR-09-BLAN-0266] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq) analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II) pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3' end of the annotated genes (EAGs) by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 39 from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A)(+)], Pol II occupancy downstream of the EAGs can be detected up to 4-6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A)(+) genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3' of the EAGs have also been confirmed in mouse embryonic stem (mES) cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 39 end processing mechanisms and consequent Pol II transcription termination processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据