4.6 Article

GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics

期刊

PLOS ONE
卷 7, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0036060

关键词

-

资金

  1. HPCI Strategic Program Computational Life Science and Application in Drug Discovery and Medical Development by MEXT of Japan
  2. National Cancer Center, Japan
  3. CUDA COE Program by NVIDIA
  4. Grants-in-Aid for Scientific Research [12J08766, 23310131, 221S0002, 22380176] Funding Source: KAKEN

向作者/读者索取更多资源

Background: A large number of sensitive homology searches are required for mapping DNA sequence fragments to known protein sequences in public and private databases during metagenomic analysis. BLAST is currently used for this purpose, but its calculation speed is insufficient, especially for analyzing the large quantities of sequence data obtained from a next-generation sequencer. However, faster search tools, such as BLAT, do not have sufficient search sensitivity for metagenomic analysis. Thus, a sensitive and efficient homology search tool is in high demand for this type of analysis. Methodology/Principal Findings: We developed a new, highly efficient homology search algorithm suitable for graphics processing unit (GPU) calculations that was implemented as a GPU system that we called GHOSTM. The system first searches for candidate alignment positions for a sequence from the database using pre-calculated indexes and then calculates local alignments around the candidate positions before calculating alignment scores. We implemented both of these processes on GPUs. The system achieved calculation speeds that were 130 and 407 times faster than BLAST with 1 GPU and 4 GPUs, respectively. The system also showed higher search sensitivity and had a calculation speed that was 4 and 15 times faster than BLAT with 1 GPU and 4 GPUs. Conclusions: We developed a GPU-optimized algorithm to perform sensitive sequence homology searches and implemented the system as GHOSTM. Currently, sequencing technology continues to improve, and sequencers are increasingly producing larger and larger quantities of data. This explosion of sequence data makes computational analysis with contemporary tools more difficult. We developed GHOSTM, which is a cost-efficient tool, and offer this tool as a potential solution to this problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据