4.6 Article

New Details of HCV NS3/4A Proteinase Functionality Revealed by a High-Throughput Cleavage Assay

期刊

PLOS ONE
卷 7, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0035759

关键词

-

资金

  1. NIH [R43GM085884, R01GM98835, R01CA83017, R01CA157328]

向作者/读者索取更多资源

Background: The hepatitis C virus (HCV) genome encodes a long polyprotein, which is processed by host cell and viral proteases to the individual structural and non-structural (NS) proteins. HCV NS3/4A serine proteinase (NS3/4A) is a non-covalent heterodimer of the N-terminal, similar to 180-residue portion of the 631-residue NS3 protein with the NS4A co-factor. NS3/4A cleaves the polyprotein sequence at four specific regions. NS3/4A is essential for viral replication and has been considered an attractive drug target. Methodology/Principal Findings: Using a novel multiplex cleavage assay and over 2,660 peptide sequences derived from the polyprotein and from introducing mutations into the known NS3/4A cleavage sites, we obtained the first detailed fingerprint of NS3/4A cleavage preferences. Our data identified structural requirements illuminating the importance of both the short-range (P1-P1') and long-range (P6-P5) interactions in defining the NS3/4A substrate cleavage specificity. A newly observed feature of NS3/4A was a high frequency of either Asp or Glu at both P5 and P6 positions in a subset of the most efficient NS3/4A substrates. In turn, aberrations of this negatively charged sequence such as an insertion of a positively charged or hydrophobic residue between the negatively charged residues resulted in inefficient substrates. Because NS5B misincorporates bases at a high rate, HCV constantly mutates as it replicates. Our analysis revealed that mutations do not interfere with polyprotein processing in over 5,000 HCV isolates indicating a pivotal role of NS3/4A proteolysis in the virus life cycle. Conclusions/Significance: Our multiplex assay technology in light of the growing appreciation of the role of proteolytic processes in human health and disease will likely have widespread applications in the proteolysis research field and provide new therapeutic opportunities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据