4.6 Article

Nitroxyl (HNO) Stimulates Soluble Guanylyl Cyclase to Suppress Cardiomyocyte Hypertrophy and Superoxide Generation

期刊

PLOS ONE
卷 7, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0034892

关键词

-

资金

  1. National Health and Medical Research Council (NHMRC) [ID472642, ID472673]
  2. Heart Foundation of Australia Postdoctoral Fellowship [PF09M4623]
  3. Foundation for High Blood Pressure Research Postdoctoral Fellowship

向作者/读者索取更多资源

Background: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NON attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated. Methods: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli's salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 mu mol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. Results: We now demonstrate that Angeli's salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and beta-myosin heavy chain expression. Angeli's salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli's salt were mimicked by BNP. We also demonstrate that the effects of Angeli's salt are specifically mediated by HNO (with no role for NO center dot or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP). Conclusions: Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据