4.6 Article

Analysis of her1 and her7 Mutants Reveals a Spatio Temporal Separation of the Somite Clock Module

期刊

PLOS ONE
卷 7, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0039073

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft Sonderforschungsbereich [572]

向作者/读者索取更多资源

Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The hairy and Enhancer of Split''- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1(hu2124) and her7(hu2526) were analyzed. In the course of embryonic development, her1(hu2124) mutants exhibit disruption of the three anterior-most somite borders, whereas her7(hu2526) mutants display somite border defects restricted to somites 8 (+/-3) to 17 (+/-3) along the anterior-posterior axis. Analysis of the molecular defects in her1(hu2124) mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1(hu2124) embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1(hu2124) mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据