4.6 Article

Efficient Generation of Lens Progenitor Cells from Cataract Patient-Specific Induced Pluripotent Stem Cells

期刊

PLOS ONE
卷 7, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0032612

关键词

-

资金

  1. National Natural Science Foundation of China [81070717]
  2. Program of Shanghai Subject Chief Scientist [11XD1401200]

向作者/读者索取更多资源

The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs) may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs) could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS) colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2), and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP). In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT) markers compared with human embryonic stem cells (hESCs) and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract pathophysiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据