4.6 Article

Cellular Stress Induced Alterations in MicroRNA let-7a and let-7b Expression Are Dependent on p53

期刊

PLOS ONE
卷 6, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0024429

关键词

-

资金

  1. National Institutes of Health

向作者/读者索取更多资源

Genotoxic stressors, such as radiation, induce cellular damage that activates pre-programmed repair pathways, some of which involve microRNAs (miRNA) that alter gene expression. The let-7 family of miRNA regulates multiple cellular processes including cell division and DNA repair pathways. However, the role and mechanism underlying regulation of let-7 genes in response to stress have yet to be elucidated. In this study we demonstrate that let-7a and let-7b expression decreases significantly following exposure to agents that induce stress including ionizing radiation. This decrease in expression is dependent on p53 and ATM in vitro and is not observed in a p53(-/-) colon cancer cell line (HCT116) or ATM(-/-) human fibroblasts. Chromatin Immunoprecipitation (ChIP) analysis showed p53 binding to a region upstream of the let-7 gene following radiation exposure. Luciferase transient transfections demonstrated that this p53 binding site is necessary for radiation-induced decreases in let-7 expression. A radiation-induced decrease in let-7a and let-7b expression is also observed in radiation-sensitive tissues in vivo and correlates with altered expression of proteins in p53-regulated proapoptotic signaling pathways. In contrast, this decreased expression is not observed in p53 knock-out mice suggesting that p53 directly repress let-7 expression. Exogenous expression of let-7a and let-7b increased radiation-induced cytotoxicity in HCT116 p53(+/+) cells but not HCT116 p53(-/-) cells. These results are the first demonstration of a mechanistic connection between the radiation-induced stress response and the regulation of miRNA and radiation-induced cytotoxicity and suggest that this process may be a molecular target for anticancer agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据