4.6 Article

Heritable Targeted Inactivation of Myostatin Gene in Yellow Catfish (Pelteobagrus fulvidraco) Using Engineered Zinc Finger Nucleases

期刊

PLOS ONE
卷 6, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0028897

关键词

-

资金

  1. Fund for Independent Innovation on Agriculture Science and Technology of Jiangsu Province [CX(11)1036]
  2. National Natural Science Foundation of China [30871439]
  3. Natural Science Foundation of Jiangsu Province [BK2008484]
  4. Fundamental Research Funds for the Central Universities [1114090302]

向作者/读者索取更多资源

Yellow catfish (Pelteobagrus fulvidraco) is one of the most important freshwater aquaculture species in China. However, its small size and lower meat yield limit its edible value. Myostatin (MSTN) is a negative regulator of mammalian muscle growth. But, the function of Mstn in fish remains elusive. To explore roles of mstn gene in fish growth and create a strain of yellow catfish with high amount of muscle mass, we performed targeted disruption of mstn in yellow catfish using engineered zinc-finger nucleases (ZFNs). Employing zebrafish embryos as a screening system to identify ZFN activity, we obtained one pair of ZFNs that can edit mstn in yellow catfish genome. Using the ZFNs, we successfully obtained two founders (Founder July29-7 and Founder July29-8) carrying mutated mstn gene in their germ cells. The mutated mstn allele inherited from Founder July29-7 was a null allele (mstn(nju6)) containing a 4 bp insertion, predicted to encode function null Mstn. The mutated mstn inherited from Founder July29-8 was a complex type of mutation (mstn(nju7)), predicted to encode a protein lacking two amino acids in the N-terminal secretory signal of Mstn. Totally, we obtained 6 mstn(nju6/+) and 14 mstn(nju7/+) yellow catfish. To our best knowledge, this is the first endogenous gene knockout in aquaculture fish. Our result will help in understanding the roles of mstn gene in fish.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据