4.6 Article

Protective Role of Hydrogen Sulfide against Noise-Induced Cochlear Damage: A Chronic Intracochlear Infusion Model

期刊

PLOS ONE
卷 6, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0026728

关键词

-

资金

  1. National Natural Science Foundation of China [30973299, 81070791, 30872857, 30930098]

向作者/读者索取更多资源

Background: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H2S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H2S in cochlear blood flow regulation and noise protection. Methodology/Principal Findings: The gene and protein expression of the H2S synthetase cystathionine-c-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Conclusions/Significance: Our results suggest that H2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据