4.6 Article

Enzyme-Nanoporous Gold Biocomposite: Excellent Biocatalyst with Improved Biocatalytic Performance and Stability

期刊

PLOS ONE
卷 6, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0024207

关键词

-

资金

  1. National Natural Science Foundation of China [20706035]
  2. New Teacher Foundation of Ministry of Education of China [20090131120005]
  3. Excellent Middle-Aged and Youth Scientist Award Foundation of Shandong Province [BS2010SW016]
  4. Independent Innovation Foundation of Shandong University
  5. Shandong Natural Science Fund for Distinguished Young Scholars

向作者/读者索取更多资源

Background: Applications involving biomolecules, such as enzymes, antibodies, and other proteins as well as whole cells, are often hampered by their unstable nature at extremely high temperature and in organic solvents. Methodology/Principal Findings: We constructed enzyme-NPG biocomposites by assembling various enzymes onto the surface of nanoporous gold (NPG), which showed much enhanced biocatalytic performance and stability. Various enzymes with different molecular sizes were successfully tethered onto NPG, and the loadings were 3.6, 3.1 and 0.8 mg g(-1) for lipase, catalase and horseradish peroxidase, respectively. The enzyme-NPG biocomposites exhibited remarkable catalytic activities which were fully comparable to those of free enzymes. They also presented enhanced stability, with 74, 78 and 53% of enzymatic activity retained after 20 successive batch reactions. Moreover, these novel biocomposites possessed significantly enhanced reaction durability under various thermal and in organic solvent systems. In a sample transesterification reaction, a high conversion rate was readily achieved by using the lipase-NPG biocomposite. Conclusion/Significance: These nano-biocomposite materials hold great potential in applications such as biosensing, molecular electronics, catalysis, and controlled delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据