4.6 Article

A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization

期刊

PLOS ONE
卷 6, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0019101

关键词

-

资金

  1. CNRS
  2. Pasteur Institute
  3. European Union

向作者/读者索取更多资源

Background: Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a ''trans'' side, one to a few nanometer thick, located between the supporting surface and the membrane; and a cis'' side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a cis'' side corresponding to the extracellular milieu and a trans'' side marked by a key cytosolic signaling protein, calmodulin. Methodology/Principal Findings: We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side). Conclusions: The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据