4.6 Article

Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

期刊

PLOS ONE
卷 6, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0020212

关键词

-

资金

  1. Swedish Development Cooperation Agency-Department for Research Cooperation [SWE 2005-0017, SWE 2005-4596, SWE-2007-174, SWE-2005-4027]
  2. Fundacao para a Ciencia e Tecnologia (FCT)/Ministerio da Ciencia e Ensino Superior, Portugal-MCES [SFRH/BD/28393/2006, SFRH/BD/28368/2006]
  3. Wellcome Trust of Great Britain
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/28393/2006, SFRH/BD/28368/2006] Funding Source: FCT

向作者/读者索取更多资源

Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P. falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据