4.6 Article

Prolonged Mechanical Ventilation Induces Cell Cycle Arrest in Newborn Rat Lung

期刊

PLOS ONE
卷 6, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0016910

关键词

-

资金

  1. Canadian Institute of Health Research [MOP-15272]
  2. Canadian Foundation for Innovation
  3. Sophia Children's Hospital

向作者/读者索取更多资源

Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL. kg(-1)). Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1) was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2), decreased that of p16(INK4a), while the levels of p21(Waf/Cip1) and p15(INK4b) were unchanged. Increased p27(Kip1) expression coincided with reduced phosphorylation of p27(Kip1) at Thr(157), Thr(187) and Thr(198) (p<0.05), thereby promoting its nuclear localization. Similar -but more rapid-changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg(-1)) and when fetal lung epithelial cells were subjected to a continuous (17% elongation) cyclic stretch. Conclusion: This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G(1) and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip)1, p57(Kip2)) from the Kip family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据