4.6 Article

Large Induces Functional Glycans in an O-Mannosylation Dependent Manner and Targets GlcNAc Terminals on Alpha-Dystroglycan

期刊

PLOS ONE
卷 6, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0016866

关键词

-

资金

  1. Carolinas Muscular Dystrophy foundation

向作者/读者索取更多资源

Alpha-dystroglycan (alpha-DG) is a ubiquitously expressed receptor for extracellular matrix proteins and some viruses, and plays a pivotal role in a number of pathological events, including cancer progression, muscular dystrophies, and viral infection. The O-glycans on alpha-DG are essential for its ligand binding, but the biosynthesis of the functional O-glycans remains obscure. The fact that transient overexpression of LARGE, a putative glycosyltransferase, up-regulates the functional glycans on alpha-DG to mediate its ligand binding implied that overexpression of LARGE may be a novel strategy to treat disorders with hypoglycosylation of alpha-DG. In this study, we focus on the effects of stable overexpression of Large on alpha-DG glycosylation in Chinese hamster ovary (CHO) cell and its glycosylation deficient mutants. Surprisingly, stable overexpression of Large in an O-mannosylation null deficient Lec15.2 CHO cells failed to induce the functional glycans on alpha-DG. Introducing the wild-type DPM2 cDNA, the deficient gene in the Lec15.2 cells, fully restored the Large-induced functional glycosylation, suggesting that Large induces the functional glycans in a DPM2/O-mannosylation dependent manner. Furthermore, stable overexpression of Large can effectively induce functional glycans on N-linked glycans in the Lec8 cells and ldlD cells growing in Gal deficient media, in both of which circumstances galactosylation are deficient. In addition, supplement of Gal to the ldlD cell culture media significantly reduces the amount of functional glycans induced by Large, suggested that galactosylation suppresses Large to induce the functional glycans. Thus our results revealed a mechanism by which Large competes with galactosyltransferase to target GlcNAc terminals to induce the functional glycans on alpha-DG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据