4.6 Article

Solution Structure and Dynamics of the I214V Mutant of the Rabbit Prion Protein

期刊

PLOS ONE
卷 5, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0013273

关键词

-

资金

  1. National Natural Science Foundation of China [30730026, 30570352]
  2. National Science & Technology, China [2009ZX09301-001]

向作者/读者索取更多资源

Background: The conformational conversion of the host-derived cellular prion protein (PrPC) into the disease-associated scrapie isoform (PrPSc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP(C)s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrPC (RaPrPC) and various mutants would be of great help to understand the ability of RaPrPC to be resistant to TSE agents. Methodology/Principal Findings: We determined the solution structure of the I214V mutant of RaPrPC (91-228) and detected the backbone dynamics of its structured C-terminal domain (121-228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. Conclusions/Significance: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints for understanding the inability of the conformational conversion for RaPrPC

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据