4.6 Article

Development of a Low Bias Method for Characterizing Viral Populations Using Next Generation Sequencing Technology

期刊

PLOS ONE
卷 5, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0013564

关键词

-

资金

  1. VIRxSYS corporation
  2. NIH [R01 GM073058]
  3. Fundacao Para a Ciencia e a Tecnologia [FCT]
  4. Fundacao Calouste Gulbenkian
  5. Siemens SA Portugal
  6. FCT [SFRH/BD/33204/2007]
  7. Fundação para a Ciência e a Tecnologia [SFRH/BD/33204/2007] Funding Source: FCT

向作者/读者索取更多资源

Background: With an estimated 38 million people worldwide currently infected with human immunodeficiency virus (HIV), and an additional 4.1 million people becoming infected each year, it is important to understand how this virus mutates and develops resistance in order to design successful therapies. Methodology/Principal Findings: We report a novel experimental method for amplifying full-length HIV genomes without the use of sequence-specific primers for high throughput DNA sequencing, followed by assembly of full length viral genome sequences from the resulting large dataset. Illumina was chosen for sequencing due to its ability to provide greater coverage of the HIV genome compared to prior methods, allowing for more comprehensive characterization of the heterogeneity present in the HIV samples analyzed. Our novel amplification method in combination with Illumina sequencing was used to analyze two HIV populations: a homogenous HIV population based on the canonical NL4-3 strain and a heterogeneous viral population obtained from a HIV patient's infected T cells. In addition, the resulting sequence was analyzed using a new computational approach to obtain a consensus sequence and several metrics of diversity. Significance: This study demonstrates how a lower bias amplification method in combination with next generation DNA sequencing provides in-depth, complete coverage of the HIV genome, enabling a stronger characterization of the quasispecies present in a clinically relevant HIV population as well as future study of how HIV mutates in response to a selective pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据