4.6 Article

Robust Computational Analysis of rRNA Hypervariable Tag Datasets

期刊

PLOS ONE
卷 5, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0015220

关键词

-

资金

  1. National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education and Extension Service [2005-35212-15287]
  2. Department of Energy [DOE-2005-05818]
  3. National Science Foundation [NSF-EF-0526747]
  4. Institute of Genomic Biology
  5. L.S. Edelheit Family Biological Physics Fellowship

向作者/读者索取更多资源

Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large (10(5)-10(6)) 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage clustering greatly outperforms other widely used methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据