4.6 Article

The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption

期刊

PLOS ONE
卷 5, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011862

关键词

-

资金

  1. University of Milan

向作者/读者索取更多资源

Background: Protein adsorption is the first of a complex series of events that regulates many phenomena at the nano-bio interface, e. g. cell adhesion and differentiation, in vivo inflammatory responses and protein crystallization. A quantitative understanding of how nanoscale morphology influences protein adsorption is strategic for providing insight into all of these processes, however this understanding has been lacking until now. Methodology/Principal Findings: Here we introduce novel methods for quantitative high-throughput characterization of protein-surface interaction and we apply them in an integrated experimental strategy, to study the adsorption of a panel of proteins on nanostructured surfaces. We show that the increase of nanoscale roughness ( from 15 nm to 30 nm) induces a decrease of protein binding affinity (<= 90%) and a relevant increase in adsorbed proteins (<= 500%) beyond the corresponding increase of specific area. We demonstrate that these effects are caused by protein nucleation on the surface, which is promoted by surface nanoscale pores. Conclusions/Significance: These results show that the adsorption of proteins depends significantly on surface nanostructure and that the relevant morphological parameter regulating the protein adsorption process is the nanometric pore shape. These new findings improve our understanding of the role of nanostructures as a biomaterial design parameter and they have important implications for the general understanding of cell behavior on nanostructured surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据