4.6 Article

Combining Substrate Specificity Analysis with Support Vector Classifiers Reveals Feruloyl Esterase as a Phylogenetically Informative Protein Group

期刊

PLOS ONE
卷 5, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0012781

关键词

-

资金

  1. Danish Research Council for Technology and Production Sciences
  2. Wallenberg Wood Science Center
  3. CONACYT-Mexico
  4. Chalmers Foundation

向作者/读者索取更多资源

Background: Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities. Methodology/Principal Findings: In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (similar to 86% correct classification), Order (similar to 88% correct classification) and Family (similar to 88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs. Conclusion/Significance: The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据