4.6 Article

Trafficking of Sendai Virus Nucleocapsids Is Mediated by Intracellular Vesicles

期刊

PLOS ONE
卷 5, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0010994

关键词

-

资金

  1. National Institute of Allergy and Infectious Disease [AI055940]
  2. NIH [T32 AI007362]

向作者/读者索取更多资源

Background: Paramyxoviruses are assembled at the plasma membrane budding sites after synthesis of all the structural components in the cytoplasm. Although viral ribonuclocapsid (vRNP) is an essential component of infectious virions, the process of vRNP translocation to assembly sites is poorly understood. Methodology/Principal Findings: To analyze real-time trafficking of vRNPs in live infected cells, we created a recombinant Sendai virus (SeV), rSeVLeGFP, which expresses L protein fused to enhanced green fluorescent protein (eGFP). The rSeVLeGFP showed similar growth kinetics compared to wt SeV, and newly synthesized LeGFP could be detected as early as 8 h postinfection. The majority of LeGFP co-localized with other components of vRNPs, NP and P proteins, suggesting the fluorescent signals of LeGFP represent the locations of vRNPs. Analysis of LeGFP movement using time-lapse digital video microscopy revealed directional and saltatory movement of LeGFP along microtubules. Treatment of the cells with nocodazole restricted vRNP movement and reduced progeny virion production without affecting viral protein synthesis, suggesting the role of microtubules in vRNP trafficking and virus assembly. Further study with an electron microscope showed close association of vRNPs with intracellular vesicles present in infected cells. In addition, the vRNPs co-localized with Rab11a protein, which is known to regulate the recycling endocytosis pathway and Golgi-to-plasma membrane trafficking. Simultaneous movement between LeGFP and Rab11a was also observed in infected cells, which constitutively express mRFP-tagged Rab11a. Involvement of recycling endosomes in vRNP translocation was also suggested by the fact that vRNPs move concomitantly with recycling transferrin labeled with Alexa 594. Conclusions/Significance: Collectively, our results strongly suggest a previously unrecognized involvement of the intracellular vesicular trafficking pathway in vRNP translocation and provide new insights into the transport of viral structural components to the assembly sites of enveloped viruses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据