4.6 Article

Persistent Synapse Loss Induced by Repetitive LTD in Developing Rat Hippocampal Neurons

期刊

PLOS ONE
卷 5, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0010390

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology [21790219]
  2. CREST
  3. Grants-in-Aid for Scientific Research [21790219] Funding Source: KAKEN

向作者/读者索取更多资源

Synaptic pruning is a physiological event that eliminates excessive or inappropriate synapses to form proper synaptic connections during development of neurons. Appropriate synaptic pruning is required for normal neural development. However, the mechanism of synaptic pruning is not fully understood. Strength of synaptic activity under competitive circumstances is thought to act as a selective force for synaptic pruning. Long-term depression (LTD) is a synaptic plasticity showing persistent decreased synaptic efficacy, which is accompanied by morphological changes of dendritic spines including transient retraction. Repetitive induction of LTD has been shown to cause persistent loss of synapses in mature neurons. Here, we show that multiple, but not single, induction of LTD caused a persistent reduction in the number of dendritic synapses in cultured rat developing hippocampal neurons. When LTD was induced in 14 days in vitro cultures by application of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, and repeated three times with a one day interval, there was a significant decrease in the number of dendritic synapses. This effect continued up to at least two weeks after the triple LTD induction. The persistent reduction in synapse number occurred in the proximal dendrites, but not the distal dendrites, and was prevented by simultaneous application of the group I/II mGluR antagonist (S)-a-methyl-4-carboxyphenylglycine (MCPG). In conclusion, we found that repetitive LTD induction in developing neurons elicits synaptic pruning and contributes to activity-dependent regulation of synapse number in rat hippocampal neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据