4.6 Article

Caffeine Prevents Transcription Inhibition and P-TEFb/7SK Dissociation Following UV-Induced DNA Damage

期刊

PLOS ONE
卷 5, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0011245

关键词

-

资金

  1. Associazione Italiana Ricerca sul Cancro [5366]
  2. University of Naples (Polo delle Scienze e delle Tecnologie)

向作者/读者索取更多资源

Background: The mechanisms by which DNA damage triggers suppression of transcription of a large number of genes are poorly understood. DNA damage rapidly induces a release of the positive transcription elongation factor b (P-TEFb) from the large inactive multisubunit 7SK snRNP complex. P-TEFb is required for transcription of most class II genes through stimulation of RNA polymerase II elongation and cotranscriptional pre-mRNA processing. Methodology/Principal Findings: We show here that caffeine prevents UV-induced dissociation of P-TEFb as well as transcription inhibition. The caffeine-effect does not involve PI3-kinase-related protein kinases, because inhibition of phosphatidylinositol 3-kinase family members (ATM, ATR and DNA-PK) neither prevents P-TEFb dissociation nor transcription inhibition. Finally, caffeine prevention of transcription inhibition is independent from DNA damage. Conclusion/Significance: Pharmacological prevention of P-TEFb/7SK snRNP dissociation and transcription inhibition following UV-induced DNA damage is correlated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据