4.6 Article

Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus

期刊

PLOS ONE
卷 5, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0008557

关键词

-

资金

  1. National Institutes of Health [P01HL057345, R56AI083358, R01AR45676]
  2. VA Merit award

向作者/读者索取更多资源

Antimicrobial peptides play an important role in host defense against pathogens. Recently, phenol-soluble modulins (PSMs) from Staphylococcus epidermidis (S. epidermidis) were shown to interact with lipid membranes, form complexes, and exert antimicrobial activity. Based on the abundance and innocuity of the cutaneous resident S. epidermidis, we hypothesized that their PSMs contribute to host defense. Here we show that S. epidermidis delta-toxin (PSM gamma) is normally present in the epidermis and sparsely in the dermis of human skin using immunohistochemistry. Synthetic delta-toxin interacted with neutrophil extracellular traps (NETs) and colocalized with cathelicidin while also inducing NET formation in human neutrophils. In antimicrobial assays against Group A Streptococcus (GAS), delta-toxin cooperated with CRAMP, hBD2, and hBD3. In whole blood, addition of delta-toxin exerted a bacteriostatic effect on GAS, and in NETs, delta-toxin increased their killing capacity against this pathogen. Coimmunoprecipitation and tryptophan spectroscopy demonstrated direct binding of delta-toxin to host antimicrobial peptides LL-37, CRAMP, hBD2, and hBD3. Finally, in a mouse wound model, GAS survival was reduced (along with Mip-2 cytokine levels) when the wounds were pretreated with delta-toxin. Thus, these data suggest that S. epidermidis-derived delta-toxin cooperates with the host-derived antimicrobial peptides in the innate immune system to reduce survival of an important human bacterial pathogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据