4.6 Article

Rho Kinases Regulate the Renewal and Neural Differentiation of Embryonic Stem Cells in a Cell Plating Density-Dependent Manner

期刊

PLOS ONE
卷 5, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0009187

关键词

-

资金

  1. National Science Council, Taiwan
  2. National Health Research Institutes, Taiwan

向作者/读者索取更多资源

Background: Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation. Methodology/Principal Findings: CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 10(4)/cm(2) (high'' seeding density) or 2 x 10(3)/cm(2) (low'' density). However, at high seeding density, Y-27632-treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not beta III-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632-treated CCE cells seeded at 2 x 10(3) or 6.6 x 10(3) cells/cm(2) did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2 x 10(3)/cm(2) did not change renewal factors. Conclusions/Significance: We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据