4.6 Article

Laetoli Footprints Preserve Earliest Direct Evidence of Human-Like Bipedal Biomechanics

期刊

PLOS ONE
卷 5, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0009769

关键词

-

资金

  1. University of Arizona

向作者/读者索取更多资源

Background: Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease energy costs of bipedalism by 3.6 Ma. Methodology/Principal Findings: Using an experimental design, we show that the Laetoli hominins walked with weight transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials matches weight distribution patterns found in the Laetoli footprints. Conclusions: These results provide us with the earliest direct evidence of kinematically human-like bipedalism currently known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important selection pressure on hominin bipeds by 3.6 Ma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据