4.6 Article

FMRI Effective Connectivity and TMS Chronometry: Complementary Accounts of Causality in the Visuospatial Judgment Network

期刊

PLOS ONE
卷 4, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0008307

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NWO) [021-002-087, 452-06-003, 400-07-048]
  2. Deutsche Forschungsgemeinschaft
  3. Netherlands Organization for Scientific Research [DN 55-19]

向作者/读者索取更多资源

Background: While traditionally quite distinct, functional neuroimaging (e.g. functional magnetic resonance imaging: fMRI) and functional interference techniques (e.g. transcranial magnetic stimulation: TMS) increasingly address similar questions of functional brain organization, including connectivity, interactions, and causality in the brain. Time-resolved TMS over multiple brain network nodes can elucidate the relative timings of functional relevance for behavior (TMS chronometry''), while fMRI functional or effective connectivity (fMRI EC) can map task-specific interactions between brain regions based on the interrelation of measured signals. The current study empirically assessed the relation between these different methods. Methodology/Principal Findings: One group of 15 participants took part in two experiments: one fMRI EC study, and one TMS chronometry study, both of which used an established cognitive paradigm involving one visuospatial judgment task and one color judgment control task. Granger causality mapping (GCM), a data-driven variant of fMRI EC analysis, revealed a frontal-to-parietal flow of information, from inferior/middle frontal gyrus (MFG) to posterior parietal cortex (PPC). FMRI EC-guided Neuronavigated TMS had behavioral effects when applied to both PPC and to MFG, but the temporal pattern of these effects was similar for both stimulation sites. At first glance, this would seem in contradiction to the fMRI EC results. However, we discuss how TMS chronometry and fMRI EC are conceptually different and show how they can be complementary and mutually constraining, rather than contradictory, on the basis of our data. Conclusions/Significance: The findings that fMRI EC could successfully localize functionally relevant TMS target regions on the single subject level, and conversely, that TMS confirmed an fMRI EC identified functional network to be behaviorally relevant, have important methodological and theoretical implications. Our results, in combination with data from earlier studies by our group (Sack et al., 2007, Cerebral Cortex), lead to informed speculations on complex brain mechanisms, and TMS disruption thereof, underlying visuospatial judgment. This first in-depth empirical and conceptual comparison of fMRI EC and TMS chronometry thereby shows the complementary insights offered by the two methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据