4.6 Article

The Evolution of a Capacity to Build Supra-Cellular Ropes Enabled Filamentous Cyanobacteria to Colonize Highly Erodible Substrates

期刊

PLOS ONE
卷 4, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0007801

关键词

-

向作者/读者索取更多资源

Background: Several motile, filamentous cyanobacteria display the ability to self-assemble into tightly woven or twisted groups of filaments that form macroscopic yarns or ropes, and that are often centimeters long and 50-200 mu m in diameter. Traditionally, this trait has been the basis for taxonomic definition of several genera, notably Microcoleus and Hydrocoleum, but the trait has not been associated with any plausible function. Method and Findings: Through the use of phylogenetic reconstruction, we demonstrate that pedigreed, rope-building cyanobacteria from various habitats do not form a monophyletic group. This is consistent with the hypothesis that rope-building ability was fixed independently in several discrete clades, likely through processes of convergent evolution or lateral transfer. Because rope-building cyanobacteria share the ability to colonize geologically unstable sedimentary substrates, such as subtidal and intertidal marine sediments and non-vegetated soils, it is also likely that this supracellular differentiation capacity imparts a particular fitness advantage in such habitats. The physics of sediment and soil erosion in fact predict that threads in the 50-200 mu m size range will attain optimal characteristics to stabilize such substrates on contact. Conclusions: Rope building is a supracellular morphological adaptation in filamentous cyanobacteria that allows them to colonize physically unstable sedimentary environments, and to act as successful pioneers in the biostabilization process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据