4.6 Article

BRCA1 Interacts with Smad3 and Regulates Smad3-Mediated TGF-β Signaling during Oxidative Stress Responses

期刊

PLOS ONE
卷 4, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0007091

关键词

-

资金

  1. NCI NIH HHS [R01 CA096805, CA096805, CA135226, R21 CA135226] Funding Source: Medline

向作者/读者索取更多资源

Background: BRCA1 is a key regulatory protein participating in cell cycle checkpoint and DNA damage repair networks. BRCA1 plays important roles in protecting numerous cellular processes in response to cell damaging signals. Transforming growth factor-beta (TGF-beta) is a potent regulator of growth, apoptosis and invasiveness of tumor cells. TFG-beta activates Smad signaling via its two cell surface receptors, the TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation. Methodology/Principal Findings: Here, we report an important role of BRCA1 in modulating TGF-beta signaling during oxidative stress responses. Wild-type (WT) BRCA1, but not mutated BRCA1 failed to activate TGF-beta mediated transactivation of the TGF-beta responsive reporter, p3TP-Lux. Further, WT-BRCA1, but not mutated BRCA1 increased the expression of Smad3 protein in a dose-dependent manner, while silencing of WT-BRCA1 by siRNA decreased Smad3 and Smad4 interaction induced by TGF-beta in MCF-7 breast cancer cells. BRCA1 interacted with Smad3 upon TGF-beta 1 stimulation in MCF-7 cells and this interaction was mediated via the domain of 298-436aa of BRCA1 and Smad3 domain of 207-426aa. In addition, H2O2 increased the colocalization and the interaction of Smad3 with WT-BRCA1. Interestingly, TGF-beta 1 induced Smad3 and Smad4 interaction was increased in the presence of H2O2 in cells expressing WT-BRCA1, while the TGF-beta 1 induced interaction between Smad3 and Smad4 was decreased upon H2O2 treatment in a dose-dependent manner in HCC1937 breast cancer cells, deficient for endogenous BRCA1. This interaction between Smad3 and Smad4 was increased in reconstituted HCC1937 cells expressing WT-BRCA1 (HCC1937/BRCA1). Further, loss of BRCA1 resulted in H2O2 induced nuclear export of phosphor-Smad3 protein to the cytoplasm, resulting decreased of Smad3 and Smad4 interaction induced by TGF-beta and in significant decrease in Smad3 and Smad4 transcriptional activities. Conclusions/Significance: These results strongly suggest that loss or reduction of BRCA1 alters TGF-beta growth inhibiting activity via Smad3 during oxidative stress responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据