4.6 Article

NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness

期刊

PLOS ONE
卷 4, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0006755

关键词

-

向作者/读者索取更多资源

Background: The psychotomimetics ketamine and MK-801, non-competitive NMDA receptor (NMDAr) antagonists, induce cognitive impairment and aggravate schizophrenia symptoms. In conscious rats, they produce an abnormal behavior associated with a peculiar brain state characterized by increased synchronization in ongoing gamma (30-80 Hz) oscillations in the frontoparietal (sensorimotor) electrocorticogram (ECoG). This study investigated whether NMDAr antagonists-induced aberrant gamma oscillations are correlated with locomotion and dependent on hyperlocomotion-related sensorimotor processing. This also implied to explore the contribution of intracortical and subcortical networks in the generation of these pathophysiological ECoG c oscillations. Methodology/Principal Findings: Quantitative locomotion data collected with a computer-assisted video tracking system in combination with ECoG revealed that ketamine and MK-801 induce highly correlated hyperlocomotion and aberrant gamma oscillations. This abnormal gamma hyperactivity was recorded over the frontal, parietal and occipital cortices. ECoG conducted under diverse consciousness states (with diverse anesthetics) revealed that NMDAr antagonists dramatically increase the power of basal gamma oscillations. Paired ECoG and intracortical local field potential recordings showed that the ECoG mainly reflects gamma oscillations recorded in underlying intracortical networks. In addition, multisite recordings revealed that NMDAr antagonists dramatically enhance the amount of ongoing gamma oscillations in multiple cortical and subcortical structures, including the prefrontal cortex, accumbens, amygdala, basalis, hippocampus, striatum and thalamus. Conclusions/Significance: NMDAr antagonists acutely produces, in the rodent CNS, generalized aberrant gamma oscillations, which are not dependent on hyperlocomotion-related brain state or conscious sensorimotor processing. These findings suggest that NMDAr hypofunction-related generalized gamma hypersynchronies represent an aberrant diffuse network noise, a potential electrophysiological correlate of a psychotic-like state. Such generalized noise might cause dysfunction of brain operations, including the impairments in cognition and sensorimotor integration seen in schizophrenia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据