4.6 Article

Epstein-Barr Virus Independent Dysregulation of UBP43 Expression Alters Interferon-Stimulated Gene Expression in Burkitt Lymphoma

期刊

PLOS ONE
卷 4, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0006023

关键词

-

资金

  1. NCI NIH HHS [R01 CA073544, P30 CA021765, R01 CA056639, CA073544, CA21765, CA056639, P30 CA062203, CA62203] Funding Source: Medline
  2. NIAID NIH HHS [T32-AI007319, T32 AI007319] Funding Source: Medline

向作者/读者索取更多资源

Epstein-Barr virus (EBV) persists as a life-long latent infection within memory B cells, but how EBV may circumvent the innate immune response within this virus reservoir is unclear. Recent studies suggest that the latency-associated non-coding RNAs of EBV may actually induce type I (antiviral) interferon production, raising the question of how EBV counters the negative consequences this is likely to have on viral persistence. We addressed this by examining the type I interferon response in Burkitt lymphoma (BL) cell lines, the only in vitro model of the restricted program of EBV latency-gene expression in persistently infected B cells in vivo. Importantly, we observed no effect of EBV on interferon alpha-induced signaling or evidence of type I interferon production, suggesting that EBV in this latent state is silent to the cell's innate antiviral surveillance. We did uncover, however, a defect in the negative feedback control of interferon signaling in a subpopulation of BL lines as was revealed by prolonged interferon-stimulated gene transcription consistent with sustained tyrosine phosphorylation on STAT1 and STAT2. This was due to inadequate induction of expression of the ubiquitin-specific protease UBP43, which removes the ubiquitin-like ISG15 polypeptide conjugated to proteins (ISGylation) in response to type I interferons. Results here are consistent with previous findings in genetically engineered Ubp43(-/-) murine cells that UBP43 down-regulates interferon signaling, independent of its ISG15 isopeptidase activity, by precluding the protein kinase JAK1 from the interferon receptor. This natural deficiency in UBP43 expression may therefore provide a useful model to further probe the biological roles of UBP43 and ISGylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据