4.6 Article

Understanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control

期刊

PLOS ONE
卷 4, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0004293

关键词

-

资金

  1. Institute of Biomedical Sciences, Academia Sinica [postdoctoral fellowship]
  2. National Science Foundation-CAREER
  3. National Academies Keck Foundation Futures Initiative
  4. Pennsylvania Infrastructure Technology Alliance
  5. Department of Energy-Genome to Life
  6. Beckman Young Investigators Program
  7. Taiwan [PhD Research Scholarship]
  8. Carnegie Mellon University, USA [Dowd-ICES Scholarship]

向作者/读者索取更多资源

Background: While neural systems are known to respond to chemical and electrical stimulation, the effect of mechanics on these highly sensitive cells is still not well understood. The ability to examine the effects of mechanics on these cells is limited by existing approaches, although their overall response is intimately tied to cell-matrix interactions. Here, we offer a novel method, which we used to investigate stretch-activated mechanotransduction on nerve terminals of sensory neurons through an elastomeric interface. Methodology/Principal Findings: To apply mechanical force on neurites, we cultured dorsal root ganglion neurons on an elastic substrate, polydimethylsiloxane (PDMS), coated with extracellular matrices (ECM). We then implemented a controlled indentation scheme using a glass pipette to mechanically stimulate individual neurites that were adjacent to the pipette. We used whole-cell patch clamping to record the stretch-activated action potentials on the soma of the single neurites to determine the mechanotransduction-based response. When we imposed specific mechanical force through the ECM, we noted a significant neuronal action potential response. Furthermore, because the mechanotransduction cascade is known to be directly affected by the cytoskeleton, we investigated the cell structure and its effects. When we disrupted microtubules and actin filaments with nocodozale or cytochalasin-D, respectively, the mechanically induced action potential was abrogated. In contrast, when using blockers of channels such as TRP, ASIC, and stretch-activated channels while mechanically stimulating the cells, we observed almost no change in action potential signalling when compared with mechanical activation of unmodified cells. Conclusions/Significance: These results suggest that sensory nerve terminals have a specific mechanosensitive response that is related to cell architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据