4.6 Article

Genome-Wide Analyses of Recombination Prone Regions Predict Role of DNA Structural Motif in Recombination

期刊

PLOS ONE
卷 4, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0004399

关键词

-

资金

  1. CSIR Task Force Project [CMM 0017]

向作者/读者索取更多资源

HapMap findings reveal surprisingly asymmetric distribution of recombinogenic regions. Short recombinogenic regions (hotspots) are interspersed between large relatively non-recombinogenic regions. This raises the interesting possibility of DNA sequence and/or other cis-elements as determinants of recombination. We hypothesized the involvement of non-canonical sequences that can result in local non-B DNA structures and tested this using the G-quadruplex DNA as a model. G-quadruplex or G4 DNA is a unique form of four-stranded non-B DNA structure that engages certain G-rich sequences, presence of such motifs has been noted within telomeres. In support of this hypothesis, genome-wide computational analyses presented here reveal enrichment of potential G4 (PG4) DNA forming sequences within 25618 human hotspots relative to 9290 coldspots (p < 0.0001). Furthermore, co- occurrence of PG4 DNA within several short sequence elements that are associated with recombinogenic regions was found to be significantly more than randomly expected. Interestingly, analyses of more than 50 DNA binding factors revealed that co- occurrence of PG4 DNA with target DNA binding sites of transcription factors c-Rel, NF-kappa B (p50 and p65) and Evi-1 was significantly enriched in recombination-prone regions. These observations support involvement of G4 DNA in recombination, predicting a functional model that is consistent with duplex-strand separation induced by formation of G4 motifs in supercoiled DNA and/or when assisted by other cellular factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据