4.6 Article

A Point Mutation in Translation Initiation Factor 2B Leads to a Continuous Hyper Stress State in Oligodendroglial-Derived Cells

期刊

PLOS ONE
卷 3, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0003783

关键词

-

资金

  1. European Leukodystrophy Association
  2. Adams Super Center
  3. USA-Israel Bi-National Science Foundation [2003364]
  4. NIH [IDDRC 1P30HD40677, 5R24 HD050846]
  5. Parson family foundation
  6. Children's Health Research Center at Children's National Medical Center [K12HD001399]
  7. American Academy of Neurology Foundation
  8. Postdoctoral Training in Developmental Disabilities Research [5T32HD046388]
  9. Direct For Mathematical & Physical Scien [2003364] Funding Source: National Science Foundation
  10. Division Of Chemistry [2003364] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background: Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM). The disease is manifested by loss of brain myelin upon physiological stress. In a previous study, we showed that fibroblasts isolated from CACH/VWM patients are hypersensitive to pharmacologically-induced endoplasmic reticulum (ER) stress. Since brain cells from affected individuals are not available for research, we wished to assess the effect of eIF2B mutation on oligodendroglial-derived cells. Methodology/Principal Findings: A rat oligodendroglial-derived cell line was used for a stable knock-down of eIF2B5 followed by stable expression of mutated eIF2B5(R195H) cDNA. In response to a pharmacological ER-stress agent, eIF2B5(R195H) expressing cells exhibited heightened ER-stress response demonstrated by hyper induction of ATF4, GADD34, Bip, PDIA1, PDIA3, PDIA4 and PDIA6 proteins. Moreover, even in the absence of a pharmacological stress agent, eIF2B5(R195H)-expressing cells exhibited high basal levels of ATF4, GADD34 and ER-associated Bip, PDIA1 and PDIA3. Significance: The data provide evidence that oligodendroglial-derived cells expressing a mutated eIF2B constantly use their stress response mechanism as an adaptation mean in order to survive. The current study is the first to demonstrate the effects of eIF2B5 mutation on ER homeostasis in oligodendroglial-derived cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据