4.6 Article

Analysis of STAT1 Activation by Six FGFR3 Mutants Associated with Skeletal Dysplasia Undermines Dominant Role of STAT1 in FGFR3 Signaling in Cartilage

期刊

PLOS ONE
卷 3, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0003961

关键词

-

资金

  1. National Institutes of Health [5P01-HD22657]
  2. Ministry of Education, Youth and Sports of the Czech Republic [MSM0021622430]
  3. Academy of Sciences of the Czech Republic [AVOZ50040507, AVOZ50040702]
  4. EMBO Installation grant
  5. Winnick Family Research Scholars award

向作者/读者索取更多资源

Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701) phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa) or no activation (293T and RCS). This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据